(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
inc(0) → 0
inc(s(x)) → s(inc(x))
minus(0, y) → 0
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(x) → log2(x, 0)
log2(x, y) → if(le(x, 0), le(x, s(0)), x, inc(y))
if(true, b, x, y) → log_undefined
if(false, b, x, y) → if2(b, x, y)
if2(true, x, s(y)) → y
if2(false, x, y) → log2(quot(x, s(s(0))), y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(x), s(y)) →+ le(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(0') → 0'
inc(s(x)) → s(inc(x))
minus(0', y) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(x) → log2(x, 0')
log2(x, y) → if(le(x, 0'), le(x, s(0')), x, inc(y))
if(true, b, x, y) → log_undefined
if(false, b, x, y) → if2(b, x, y)
if2(true, x, s(y)) → y
if2(false, x, y) → log2(quot(x, s(s(0'))), y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(0') → 0'
inc(s(x)) → s(inc(x))
minus(0', y) → 0'
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(x) → log2(x, 0')
log2(x, y) → if(le(x, 0'), le(x, s(0')), x, inc(y))
if(true, b, x, y) → log_undefined
if(false, b, x, y) → if2(b, x, y)
if2(true, x, s(y)) → y
if2(false, x, y) → log2(quot(x, s(s(0'))), y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
le,
inc,
minus,
quot,
log2They will be analysed ascendingly in the following order:
le < log2
inc < log2
minus < quot
quot < log2
(8) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
The following defined symbols remain to be analysed:
le, inc, minus, quot, log2
They will be analysed ascendingly in the following order:
le < log2
inc < log2
minus < quot
quot < log2
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s:log_undefined3_0(
n5_0),
gen_0':s:log_undefined3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
le(gen_0':s:log_undefined3_0(0), gen_0':s:log_undefined3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s:log_undefined3_0(+(n5_0, 1)), gen_0':s:log_undefined3_0(+(n5_0, 1))) →RΩ(1)
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Lemmas:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
The following defined symbols remain to be analysed:
inc, minus, quot, log2
They will be analysed ascendingly in the following order:
inc < log2
minus < quot
quot < log2
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_0':s:log_undefined3_0(
n312_0)) →
gen_0':s:log_undefined3_0(
n312_0), rt ∈ Ω(1 + n312
0)
Induction Base:
inc(gen_0':s:log_undefined3_0(0)) →RΩ(1)
0'
Induction Step:
inc(gen_0':s:log_undefined3_0(+(n312_0, 1))) →RΩ(1)
s(inc(gen_0':s:log_undefined3_0(n312_0))) →IH
s(gen_0':s:log_undefined3_0(c313_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Lemmas:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
inc(gen_0':s:log_undefined3_0(n312_0)) → gen_0':s:log_undefined3_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
The following defined symbols remain to be analysed:
minus, quot, log2
They will be analysed ascendingly in the following order:
minus < quot
quot < log2
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s:log_undefined3_0(
n526_0),
gen_0':s:log_undefined3_0(
n526_0)) →
gen_0':s:log_undefined3_0(
0), rt ∈ Ω(1 + n526
0)
Induction Base:
minus(gen_0':s:log_undefined3_0(0), gen_0':s:log_undefined3_0(0)) →RΩ(1)
0'
Induction Step:
minus(gen_0':s:log_undefined3_0(+(n526_0, 1)), gen_0':s:log_undefined3_0(+(n526_0, 1))) →RΩ(1)
minus(gen_0':s:log_undefined3_0(n526_0), gen_0':s:log_undefined3_0(n526_0)) →IH
gen_0':s:log_undefined3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Lemmas:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
inc(gen_0':s:log_undefined3_0(n312_0)) → gen_0':s:log_undefined3_0(n312_0), rt ∈ Ω(1 + n3120)
minus(gen_0':s:log_undefined3_0(n526_0), gen_0':s:log_undefined3_0(n526_0)) → gen_0':s:log_undefined3_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
The following defined symbols remain to be analysed:
quot, log2
They will be analysed ascendingly in the following order:
quot < log2
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(19) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Lemmas:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
inc(gen_0':s:log_undefined3_0(n312_0)) → gen_0':s:log_undefined3_0(n312_0), rt ∈ Ω(1 + n3120)
minus(gen_0':s:log_undefined3_0(n526_0), gen_0':s:log_undefined3_0(n526_0)) → gen_0':s:log_undefined3_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
The following defined symbols remain to be analysed:
log2
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol log2.
(21) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Lemmas:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
inc(gen_0':s:log_undefined3_0(n312_0)) → gen_0':s:log_undefined3_0(n312_0), rt ∈ Ω(1 + n3120)
minus(gen_0':s:log_undefined3_0(n526_0), gen_0':s:log_undefined3_0(n526_0)) → gen_0':s:log_undefined3_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Lemmas:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
inc(gen_0':s:log_undefined3_0(n312_0)) → gen_0':s:log_undefined3_0(n312_0), rt ∈ Ω(1 + n3120)
minus(gen_0':s:log_undefined3_0(n526_0), gen_0':s:log_undefined3_0(n526_0)) → gen_0':s:log_undefined3_0(0), rt ∈ Ω(1 + n5260)
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(26) BOUNDS(n^1, INF)
(27) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Lemmas:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
inc(gen_0':s:log_undefined3_0(n312_0)) → gen_0':s:log_undefined3_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(29) BOUNDS(n^1, INF)
(30) Obligation:
TRS:
Rules:
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
0') →
0'inc(
s(
x)) →
s(
inc(
x))
minus(
0',
y) →
0'minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
log(
x) →
log2(
x,
0')
log2(
x,
y) →
if(
le(
x,
0'),
le(
x,
s(
0')),
x,
inc(
y))
if(
true,
b,
x,
y) →
log_undefinedif(
false,
b,
x,
y) →
if2(
b,
x,
y)
if2(
true,
x,
s(
y)) →
yif2(
false,
x,
y) →
log2(
quot(
x,
s(
s(
0'))),
y)
Types:
le :: 0':s:log_undefined → 0':s:log_undefined → true:false
0' :: 0':s:log_undefined
true :: true:false
s :: 0':s:log_undefined → 0':s:log_undefined
false :: true:false
inc :: 0':s:log_undefined → 0':s:log_undefined
minus :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
quot :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log :: 0':s:log_undefined → 0':s:log_undefined
log2 :: 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
if :: true:false → true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
log_undefined :: 0':s:log_undefined
if2 :: true:false → 0':s:log_undefined → 0':s:log_undefined → 0':s:log_undefined
hole_true:false1_0 :: true:false
hole_0':s:log_undefined2_0 :: 0':s:log_undefined
gen_0':s:log_undefined3_0 :: Nat → 0':s:log_undefined
Lemmas:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s:log_undefined3_0(0) ⇔ 0'
gen_0':s:log_undefined3_0(+(x, 1)) ⇔ s(gen_0':s:log_undefined3_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s:log_undefined3_0(n5_0), gen_0':s:log_undefined3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(32) BOUNDS(n^1, INF)